PRODUCT SPECIFICATION AND INSTALLATION GUIDE

SLIDE OPENING FLAT ROOFLIGHT
ROOF MAKER
WORLD CLASS ROOFLIGHTS

SLIDE OPENING FLAT ROOFLIGHT: STANDARD PRODUCT SPECIFICATION

- 6mm Reflex + toughened safety, easy clean outer panel
- 16mm Argon gas filled cavity
- 6mm Reflex + toughened safety, high-spec low E center panel
- 16mm Argon gas filled cavity
- 6mm Reflex + toughened safety high spec low E inner panel
- Platinum grade thermal insulation
- (Marine grade) Durable polyester powder coated aluminium kerb
- Timber

- Toughened to BS EN 12150
- Manufactured to BS EN 1279 Part 2 & 3
- Standard Energy Glass unit shown above

Call us: 0116 269 6297
Mon-Fri 9-5pm
ON DELIVERY OF YOUR NEW SLIDE OPENING FLAT ROOFLIGHT, YOU WILL RECEIVE:

- Your Slide Opening Flat Rooflight
- Control box (comes in cardboard box)
- Remote control and key remote (comes in cardboard box)
- Long Screws (come attached to the cardboard box)

IN ADDITION TO YOUR NEW SLIDE OPENING FLAT ROOFLIGHT, YOU WILL NEED:

- Silicone Adhesive Sealant (high quality; Dow Corning 791 recommended)
- Drill, bits and screws as required
- Materials to prepare a timber kerb

INSTALLATION GUIDE

Make sure to read through all steps and understand all requirements before beginning assembly. We also recommend that you study the ‘cable location guide’ which provides further guidance on how to run the rooflight cabling into the property as part of the installation. This is located at the end of this guide, alongside the wiring guide and a roof section diagram.

Please take precaution when moving heavy objects and working at height. Be sure to use the correct equipment. Guide weights based on size, are shown on the chart to the right.

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000x1000</td>
<td>114</td>
</tr>
<tr>
<td>1500x1000</td>
<td>171</td>
</tr>
<tr>
<td>2000x1000</td>
<td>204</td>
</tr>
</tbody>
</table>
STEP ONE

PREPARE A TIMBER KERB FOR YOUR ROOFLIGHT

Prepare a 70mm width timber kerb for your rooflight. This should be a minimum of 30mm in height from the finished roof level (at the lowest side). The internal dimensions of your kerb should match the internal dimensions of the rooflight/size ordered.

SETTING THE DIRECTION OF THE FALL

The rooflight always opens across the ‘width’ of the rooflight, so the fall will need to be set across the width of your timber kerb, allowing it to open ‘uphill.’

Your Slide Opening Flat Rooflight needs a slight pitch of 5°-15° for rain to run off. If your roof does not have this pitch, build the angle into your kerb.

IMPORTANT - Ensure that the rooflight opens uphill, toward the highest side of the timber kerb (as shown below) with the rain sensor side being located at the lowest side of the timber kerb (which is the side that it opens away from). For this reason, we advise that you create your fall on the 2 shorter sides of the kerb in preparation for this. There should also be a minimum space of 1000mm at the side of the kerb, in the direction that the unit opens. This is vital to ensure there is sufficient clearance for the lid to fully open without obstruction.

Timber Upstand Dimensions (mm)

- **Width (W):** 70mm
- **Length (L):** 70mm
- **Min. Height:** 30mm
- **Rooflight Sliding Direction:**
- **Roof Fall Direction:**
- **Pitch:** 5°-15°

Width of timber upstand must not exceed 70mm as this will affect the performance of the integrated drip lip on your rooflight.
STEP TWO

RAIN SENSOR

It is advised that a small groove/notch (5mm max depth) is cut into your kerb in line with where the rain sensor will be positioned. This will allow you to run the wire through for your rain sensor. *The rain sensor is always located at the right hand side as the below diagram shows.*

STEP THREE

CREATE HOLES/GROOVES IN THE TIMBER KERB TO RUN THE ROOFLIGHT CABLING INTO THE PROPERTY

First, mount the supplied control box in a desired location i.e. ceiling void. Access panel may be added at your discretion. Trial fit your rooflight and mark a suitable location to drill a hole/s or create notches for the rooflight’s electrical cables - *Again, please refer to the cable location guide located at the end of this document.*
STEP FOUR

APPLY SILICONE AROUND THE TOP FACE OF THE TIMBER KERB

Apply the flashing/roof membrane to the sides of the kerb (Leaving the top face as exposed timber) and apply a thick bead of silicone around the top face, as shown.

You can now place the rooflight onto the kerb and connect it to the power supply, ready to open the rooflight and fix it with the provided long screws. The wiring guide can be found toward the end of this document.

STEP FIVE

SCREW Fix THE ROOFLIGHT TO THE TIMBER KERB

Open the rooflight via the remote control and secure it to your kerb through the preformed holes with the long screws in the top of the rooflight’s base frame. For plastering finish guidelines, please follow the roof section fitting guide, included at the end of this document.

Congratulations! Your Slide Opening Flat Rooflight is now fully installed.
Rain sensor – comes pre-fitted to the unit on the ‘opening side.’ (Out of view, but located roughly where the rain sensor cable is shown on the diagram)

Control Box – install this in the void of the roof, between the joists. This is where your actuator cables and rain sensor cable will be wired in when you have fed them through into the property. This is powered by a standard 3 pin plug socket, which you will need to install into this area in advance, positioning within 1000mm of the control box location. The control box also acts as the remote receiver.

Optional access panel – we advise that you install an access panel where the control box is located when adding your plaster finish to the timber reveals. This will maintain accessibility to the electronics for maintenance purposes in future.

Actuator cables* (always 2) located on the 2 ‘sides’ of the unit and come through the bottom, in the centre of the timber frame (close to the middle section of the unit as pictured) Measure where the cables come out of the unit so you can drill the holes/make notches in the timber kerb to feed the cables into the property/roof void and avoid damaging them when placing the unit.

* If you are running cables down the face of the timber reveal (as pictured here) and into the ceiling void, you will need to notch a channel to run the cable into, so the plasterboard will fit flush to the face of the timber (as per our finishing guidelines). This will also apply if running the actuator cables down face of the timber reveal. Please ensure you do not put fixings through the cabling when adding your plasterboard.

Timber kerb (highest side)** Position the opposite side of the unit to the rain sensor side, at the highest side of the timber kerb (side not shown)

Timber kerb (lowest side)** Position the opening side of unit (which has the rain sensor mounted) at the lowest side of the timber kerb.

Rain sensor cable - running from the pre-fitted rain sensor, this will tuck under the drip overhang of the rooflight, run through the channel you have formed in your timber kerb and into the property.

Rooflight should always open ‘uphill, toward the top of the fall.’

Roof membrane – roof and side faces of upstand must be weathered before installation.

Plywood deck

Minimum 5 degree fall running the ‘width’ or ‘opening direction’ of the rooflight.

You may need to extend the actuator cables to reach your control box, if your control box is located elsewhere or further away than we recommend. Ensure the cables are extended to exactly the same length and that this is carried out by a qualified electrician. Cable thickness required will vary dependant on the length being added – we can advise in these situations.

**The timber kerb in this diagram is shown as being angled to give the required minimum 5 degree fall. In cases that the roof has a sufficient pitch and doesn’t require an angled kerb, we still advise that the opening part of the unit is positioned at the lower part of the fall.

IMPORTANT Ensure that the timber kerb doesn’t exceed the recommended 70mm width.
black out blind option

When blinds are selected, plaster up to blind trim
Black out blind option

When no blind is selected, plaster stop to finish flush with the top of the inside profile (as illustrated)

Maximum 70mm width timber upstand, minimum height of 30mm. Pre-weather the side face of your timber upstand finishing level with the top (as illustrated). Leave the top face of the timber upstand as exposed timber. IMPORTANT do not exceed 70mm width to avoid compromising drip detail.

Apply a generous bead of silicone all the way around your upstand before lowering your rooflight into place

Primary drip lip

Screw fix through pre-drilled frame to secure rooflight to upstand as per your step by step fitting guide with screws provided. This requires you to power the rooflight before opening - refer to step by step installation guide

Lift from here (secondary drip lip)

EPDM roof finish, for alternative finishes, please refer to your step by step installation guide

Screw fix through pre-drilled frame to secure rooflight to upstand as per your step by step fitting guide with screws provided. This requires you to power the rooflight before opening - refer to step by step installation guide

Internal sizes taken from here (size ordered) = size of timber structural opening

Minimum fall 5° (inc roof) to allow water to run off
Maximum fall 15° (inc roof)

Do not lift by the glass
Kemo Rain Sensor
Connect:
Orange to any "12V"
Blue to "3"
Orange - White to any "GND"
Blue - White also to any "GND"

Outputs to actuator(s). If only using one actuator then either of the output pairs 1A and 1B or 2A and 2B can be used. Each numbered output is individually fused and is capable of supplying up to 2.1A continuous at 24VDC. The polarity at each output inverts when swapping between ‘up’ and ‘down’. Outputs 3 and 4 are not used (cables here shown as grey – please see overleaf, which shows where cables need to be wired into the output pairs, which is dependent on the type of rooflight being installed).

WARNING
Ensure that the combined load at the three “12V” output terminals does not exceed 1A. A single Kemo rain sensor should consume less than 0.2A, so if using a rain sensor there should be a further 0.8A available at 12VDC (~9W) to also operate thermostats, safety sensor switches and similar devices. DO NOT connect any 12V directly to any GND, or any of 1, 2, 3, 4, 5 to any 12V.
REMOTE CONTROLLED ROOFLIGHT WIRING GUIDE

The chart below shows the different wiring combinations you will be working with, dependant on the type of rooflight you are installing. This is specified below each variation of wire shown. Open-Lite has been shown as 2 cables which will always be the case. For sliding rooflights, there will always be 2 cables that you will wire in to output pairs 1A-1B & 2A-2B. For Flat hinged opening and Luxlite hinged opening rooflights, you will either have 1 set or 2 sets of actuator cables dependant on the amount of motors that your rooflight has been allocated. For single motor units, you can use either 1A-1B or 2A-2B and for 2 motors you will use both output pairings.